Pacing Maneuvers for Prevention of Atrial Arrhythmias

Elizabeth A. Stephenson, MD, MSc, CEPS
Associate Professor of Pediatrics
University of Toronto
The Hospital for Sick Children
Toronto
No Disclosures
Ongoing management of SVT in ACHD patients.

Assess hemodynamic abnormalities and intervention as indicated for structural defects (Class I)

Treatment strategies:

- Beta blockers, sotalol, and/or catheter ablation (Class IIa)
- Pre-op or intra-op ablation of accessory pathways or atrial tachycardia for repair of Ebstein anomaly (Class IIa)
- Surgical ablation for planned surgical repair (Class IIa)
- Amiodarone, dofetilide, or atrial pacing (Class IIb)

Bradycardia and Arrhythmia Vulnerability

- Evaluated sinus node dysfunction in CHD pts (mean age 9 yrs) with and without AFL

- Pts with AFL had:
 - Lower average heart rate
 - Reach lower maximum heart rates during exercise
 - Lower chronotropic index

- Suggested that chronotropic incompetence is related to late post-operative AFL

- Bradycardia-mediated remodeling enhances the vulnerability for AFL

Susceptibility to Pace Termination of Flutter

- 65 consecutive patients referred for pace termination of atrial flutter
- Normal sinus rhythm restored in 38 (65%)

 - Of 20 patients whose flutter was precipitated by heart surgery, 19 (95%) were successfully pace terminated.

- Pace termination was successful in only 47% of the nonsurgical pts (P < .001)

Peters et al, Am Heart J 1999;137:100-3
Efficacy of atrial arrhythmia detection and ATP using the Medtronic AT500

- 28 patients with congenital heart disease
 - age 30 ± 18 years
- 15 patients with atrial arrhythmias
 - 14 had atrial tachycardia appropriately detected
- 167 treated episodes
 - successfully converting 90 (54%)

- Rhythms classified as ventricular tachycardia were detected 127 times, yet most were actually atrial or sinus tachycardia with 1:1 atrioventricular conduction.
Atrial ATP using the Medtronic AT500 pacemaker
MINERVA

• Randomized 1166 pts with AT/AF and indications for dual chamber pacing to:
 • DDDR
 • DDDRP + MVP
 • MVP

• Study funded by Medtronic
MINERVA: “Reactive ATP”

- AT/AF irregular (207 bpm)
- Failed 1st ATP
- AT/AF regular (182 bpm)
- ATP terminated
MINERVA: Primary Endpoint

Log-rank test

DDDRP+MVP vs. Control DDDR: $P=0.04$
MVP vs. Control DDDR: $P=0.12$
DDDRP+MVP vs. MVP: $P=0.63$
A Log rank test

- DDDRP+MVP vs. Control DDDR: $P=0.001$
- MVP vs. Control DDDR: $P=0.71$
- DDDRP+MVP vs. MVP: $P=0.004$

Number at risk:
- Control DDDR: 383
- DDDRP+MVP: 373
- MVP: 389
Log rank test

DDDRP+MVP vs. Control DDDR: $P<0.001$
MVP vs. Control DDDR: $P=0.49$
DDDRP+MVP vs. MVP: $P=0.002$

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Observation period (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Control DDDR</td>
<td>383</td>
</tr>
<tr>
<td>DDDRP+MVP</td>
<td>373</td>
</tr>
<tr>
<td>MVP</td>
<td>389</td>
</tr>
</tbody>
</table>
Log rank test

DDDRP+MVP vs. Control DDDR: $P=0.003$
MVP vs. Control DDDR: $P=0.39$
DDDRP+MVP vs. MVP: $P=0.03$

Number at risk

<table>
<thead>
<tr>
<th>Group</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control DDDR</td>
<td>385</td>
<td>355</td>
<td>336</td>
<td>316</td>
<td>265</td>
</tr>
<tr>
<td>DDDRP+MVP</td>
<td>383</td>
<td>356</td>
<td>339</td>
<td>325</td>
<td>260</td>
</tr>
<tr>
<td>MVP</td>
<td>398</td>
<td>366</td>
<td>347</td>
<td>325</td>
<td>260</td>
</tr>
</tbody>
</table>
Persistent of Permanent AF

Padeletti et al. Heart Rhythm 2015 12, 1717-1725 DOI: (10.1016/j.hrthm.2015.04.015)
Pacing Potential:

- Bradycardia pacing in SND to prevent remodeling may offer some protection

- ATP-enabled pacing may limit AT episodes
Thank You